Search results
Results from the WOW.Com Content Network
Physics – negentropy, stochastic processes, and the development of new physical techniques and instrumentation as well as their application. Quantum biology – The field of quantum biology applies quantum mechanics to biological objects and problems. Decohered isomers to yield time-dependent base substitutions. These studies imply ...
Plenty of theoretical work was published on theories and hypotheses describing generation of electromagnetic field by living cells in very broad frequency range. [ 1 ] [ 2 ] [ 3 ] The most influential one was once probably the Fröhlich's hypothesis of coherence in biological systems introduced by Herbert Fröhlich in the late 1960s. [ 4 ]
Developmental bioelectricity is a sub-discipline of biology, related to, but distinct from, neurophysiology and bioelectromagnetics.Developmental bioelectricity refers to the endogenous ion fluxes, transmembrane and transepithelial voltage gradients, and electric currents and fields produced and sustained in living cells and tissues.
Usually only one solution is within the reasonable data range. In multi-parametric surface plasmon resonance, two SPR curves are acquired by scanning a range of angles at two different wavelengths, which results in a unique solution for both thickness and refractive index. Metal particle plasmons are usually modeled using the Mie scattering theory.
The rectangular potential barrier; The triangular potential; The quadratic potentials The quantum harmonic oscillator; The quantum harmonic oscillator with an applied uniform field [1] The Inverse square root potential [2] The periodic potential The particle in a lattice; The particle in a lattice of finite length [3] The Pöschl–Teller potential
The two-dimensional analogue of the vibrating string is the vibrating membrane, with the edges clamped to be motionless. The Helmholtz equation was solved for many basic shapes in the 19th century: the rectangular membrane by Siméon Denis Poisson in 1829, the equilateral triangle by Gabriel Lamé in 1852, and the circular membrane by Alfred Clebsch in 1862.
Frequency changes are also commonly observed in central pattern generators and directly relate to the speed of motor activities, such as step frequency in walking. However, changes in relative oscillation frequency between different brain areas is not so common because the frequency of oscillatory activity is often related to the time delays ...
Electrophysiology (from Greek ἥλεκτ, ēlektron, "amber" [see the etymology of "electron"]; φύσις, physis, "nature, origin"; and -λογία, -logia) is the branch of physiology that studies the electrical properties of biological cells and tissues.