enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    The red data curve is approximated by the straight black line. In electrical engineering and control theory, a Bode plot is a graph of the frequency response of a system. It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift.

  3. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...

  4. Frequency compensation - Wikipedia

    en.wikipedia.org/wiki/Frequency_compensation

    Another goal of frequency compensation is to control the step response of an amplifier circuit as shown in Figure 1. For example, if a step in voltage is input to a voltage amplifier, ideally a step in output voltage would occur. However, the output is not ideal because of the frequency response of the amplifier, and ringing occurs. Several ...

  5. Gain–bandwidth product - Wikipedia

    en.wikipedia.org/wiki/Gain–bandwidth_product

    For transistors, the current-gain–bandwidth product is known as the f T or transition frequency. [4] [5] It is calculated from the low-frequency (a few kilohertz) current gain under specified test conditions, and the cutoff frequency at which the current gain drops by 3 decibels (70% amplitude); the product of these two values can be thought of as the frequency at which the current gain ...

  6. Nichols plot - Wikipedia

    en.wikipedia.org/wiki/Nichols_plot

    A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.

  7. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The steady-state response is the output of the system in the limit of infinite time, and the transient response is the difference between the response and the steady-state response; it corresponds to the homogeneous solution of the differential equation. The transfer function for an LTI system may be written as the product:

  8. Roll-off - Wikipedia

    en.wikipedia.org/wiki/Roll-off

    For some filter classes, such as the Butterworth filter, the insertion loss is still monotonically increasing with frequency and quickly asymptotically converges to a roll-off of 20n dB/decade, but in others, such as the Chebyshev or elliptic filter the roll-off near the cut-off frequency is much faster and elsewhere the response is anything ...

  9. Spectrum analyzer - Wikipedia

    en.wikipedia.org/wiki/Spectrum_analyzer

    Spectrum analyzers are widely used to measure the frequency response, noise and distortion characteristics of all kinds of radio-frequency (RF) circuitry, by comparing the input and output spectra. For example, in RF mixers, spectrum analyzer is used to find the levels of third order inter-modulation products and conversion loss.

  1. Related searches how to understand frequency response curve of an amplifier calculator project

    frequency response graphwhat is a frequency response
    frequency response in electronics