enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.

  3. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Although an unbiased estimator is theoretically preferable to a biased estimator, in practice, biased estimators with small biases are frequently used. A biased estimator may be more useful for several reasons. First, an unbiased estimator may not exist without further assumptions. Second, sometimes an unbiased estimator is hard to compute.

  4. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    Bias is a property of the estimator, not of the estimate. Often, people refer to a "biased estimate" or an "unbiased estimate", but they really are talking about an "estimate from a biased estimator", or an "estimate from an unbiased estimator". Also, people often confuse the "error" of a single estimate with the "bias" of an estimator.

  5. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.

  6. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    We say that the estimator is a finite-sample efficient estimator (in the class of unbiased estimators) if it reaches the lower bound in the Cramér–Rao inequality above, for all θ ∈ Θ. Efficient estimators are always minimum variance unbiased estimators. However the converse is false: There exist point-estimation problems for which the ...

  7. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    Two or more statistical models may be compared using their MSEs—as a measure of how well they explain a given set of observations: An unbiased estimator (estimated from a statistical model) with the smallest variance among all unbiased estimators is the best unbiased estimator or MVUE (Minimum-Variance Unbiased Estimator).

  8. Consistent estimator - Wikipedia

    en.wikipedia.org/wiki/Consistent_estimator

    This sequence is consistent: the estimators are getting more and more concentrated near the true value θ 0; at the same time, these estimators are biased. The limiting distribution of the sequence is a degenerate random variable which equals θ 0 with probability 1.

  9. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Bias: The bootstrap distribution and the sample may disagree systematically, in which case bias may occur. If the bootstrap distribution of an estimator is symmetric, then percentile confidence-interval are often used; such intervals are appropriate especially for median-unbiased estimators of minimum risk (with respect to an absolute loss ...