Search results
Results from the WOW.Com Content Network
For if a magnet is placed in a uniform magnetic field then both poles will feel the same magnetic force but in opposite directions, since they have opposite magnetic charge. But, when a magnet is placed in the non-uniform field, such as that due to another magnet, the pole experiencing the large magnetic field will experience the large force ...
The magnetic field generated by a steady current I (a constant flow of electric charges, in which charge neither accumulates nor is depleted at any point) [note 8] is described by the Biot–Savart law: [21]: 224 = ^, where the integral sums over the wire length where vector dâ„“ is the vector line element with direction in the same sense as ...
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges .
where is the magnetic force constant from the Biot–Savart law, / is the total force on either wire per unit length of the shorter (the longer is approximated as infinitely long relative to the shorter), is the distance between the two wires, and , are the direct currents carried by the wires.
Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).
This demonstrates that the force is the same in both frames (as would be expected), and therefore any observable consequences of this force, such as the induced current, would also be the same in both frames. This is despite the fact that the force is seen to be an electric force in the conductor frame, but a magnetic force in the magnet's frame.
Lorentz force acting on fast-moving charged particles in a bubble chamber.Positive and negative charge trajectories curve in opposite directions. In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields.
In electromagnetics, the catapult description of magnetic forces refers to when a current is passed through a loose wire in a magnetic field. The loose wire is then catapulted horizontally away from the magnetic field. This occurs due to the Lorentz force acting on the electric current in the wire due to the magnetic field. [1]