Search results
Results from the WOW.Com Content Network
Stoma in a tomato leaf shown via colorized scanning electron microscope image A stoma in horizontal cross section The underside of a leaf. In this species (Tradescantia zebrina) the guard cells of the stomata are green because they contain chlorophyll while the epidermal cells are chlorophyll-free and contain red pigments.
Removed cuticle from covering stoma. 23:03, 23 April 2011: 1,200 × 800 (275 KB) Zephyris {{Information |Description ={{en|1=The fine scale structure of a leaf featuring the major tissues; the upper and lower epithelia (and associated cuticles), the palisade and spongy mesophyll and the guard cells of the stoma. Vascular tissue (veins) is n
Guard cells are cells surrounding each stoma. They help to regulate the rate of transpiration by opening and closing the stomata. Light is the main trigger for the opening or closing. [citation needed] Each guard cell has a relatively thick and thinner cuticle [clarification needed] on the pore-side and a thin one opposite it. As water enters ...
English: The medium scale structure of a leaf featuring the major tissues; the upper and lower epithelia (and associated cuticles), the palisade and spongy mesophyll and the guard cells of the stoma. Vascular tissue (veins), made up of xylem, phloem and sheath cells, and example trichromes are also shown.
The leaf and stem epidermis is covered with pores called stomata (sing; stoma), part of a stoma complex consisting of a pore surrounded on each side by chloroplast-containing guard cells, and two to four subsidiary cells that lack chloroplasts. The stomata complex regulates the exchange of gases and water vapor between the outside air and the ...
A wonderful diagram, assuming the content is accurate. Rwxrwxrwx 22:42, 28 April 2011 (UTC) Support but you really should drop the number of required votes to 4. Adam Cuerden 08:23, 3 May 2011 (UTC) Promoted File:Leaf Tissue Structure.svg--Makeemlighter 01:45, 4 May 2011 (UTC)
Stomatal conductance, usually measured in mmol m −2 s −1 by a porometer, estimates the rate of gas exchange (i.e., carbon dioxide uptake) and transpiration (i.e., water loss as water vapor) through the leaf stomata as determined by the degree of stomatal aperture (and therefore the physical resistances to the movement of gases between the air and the interior of the leaf).
Transpiration of water in xylem Stoma in a tomato leaf shown via colorized scanning electron microscope The clouds in this image of the Amazon Rainforest are a result of evapotranspiration. Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves , stems and flowers .