Search results
Results from the WOW.Com Content Network
DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond.It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such as DNA ligase IV) may specifically repair double-strand breaks (i.e. a break in both complementary strands of DNA).
DNA ligase is an enzyme that joins together ends of DNA molecules. Although commonly represented as joining two pairs of ends at once, as in the ligation of restriction enzyme fragments, ligase can also join the ends on only one of the two strands (for example, when the other strand is already continuous or lacks a terminal phosphate necessary for ligation).
To begin synthesis, a short fragment of RNA, called a primer, must be created and paired with the template DNA strand. DNA polymerase adds a new strand of DNA by extending the 3′ end of an existing nucleotide chain, adding new nucleotides matched to the template strand, one at a time, via the creation of phosphodiester bonds.
Loading of Mcm proteins can only occur during the G 1 of the cell cycle, and the loaded complex is then activated during S phase by recruitment of the Cdc45 protein and the GINS complex to form the active Cdc45–Mcm–GINS (CMG) helicase at DNA replication forks. [62] [108] Mcm activity is required throughout the S phase for DNA replication.
S phase (Synthesis phase) is the phase of the cell cycle in which DNA is replicated, occurring between G 1 phase and G 2 phase. [1] Since accurate duplication of the genome is critical to successful cell division, the processes that occur during S-phase are tightly regulated and widely conserved.
Afterwards, the 3’ ssDNA invades the template DNA, and displaces a DNA strand to form a D-loop. DNA polymerase and other accessory factors follows by replacing the missing DNA via DNA synthesis. Ligase then attaches the DNA strand break, [10] resulting in the formation of 2 Holliday junctions. The recombined DNA strands then undergoes ...
The mechanism of the ligation reaction was first elucidated in the laboratory of I. Robert Lehman. [4] [5] Two fragments of DNA may be joined by DNA ligase which catalyzes the formation of a phosphodiester bond between the 3'-hydroxyl group (-OH) at one end of a strand of DNA and the 5'-phosphate group (-PO4) of another.
Eukaryotic DNA ligase 1 catalyzes a reaction that is chemically universal to all ligases. DNA ligase 1 utilizes adenosine triphosphate (ATP) to catalyze the energetically favorable ligation events in both DNA replication and repair. During the synthesis phase (S-phase) of the eukaryotic cell cycle, DNA replication occurs.