Search results
Results from the WOW.Com Content Network
In physics, a mass balance, also called a material balance, is an application of conservation of mass [1] to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique.
A material balance on the differential volume of a fluid element, or plug, on species i of axial length dx between x and x + dx gives: [accumulation] = [in] - [out] + [generation] - [consumption] Accumulation is 0 under steady state; therefore, the above mass balance can be re-written as follows: 1.
Material balancing involves taking a survey of the available inputs and raw materials in an economy and then using a balance sheet to balance the inputs with output targets specified by industry to achieve a balance between supply and demand. This balance is used to formulate a plan for resource allocation and investment in a national economy ...
A mass balance, also called a material balance, is an application of conservation of mass to the analysis of physical systems. It is the simplest governing equation, and it is simply a budget (balance calculation) over the quantity in question:
A continuity equation is the mathematical way to express this kind of statement. For example, the continuity equation for electric charge states that the amount of electric charge in any volume of space can only change by the amount of electric current flowing into or out of that volume through its boundaries.
Diagram showing the setup of a continuous stirred-tank reactor. The continuous stirred-tank reactor (CSTR), also known as vat-or backmix reactor, mixed flow reactor (MFR), or a continuous-flow stirred-tank reactor (CFSTR), is a common model for a chemical reactor in chemical engineering and environmental engineering.
The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a suitable constitutive equation for the specific energy density of the fluid. Historically, only the equations of conservation of mass and balance of momentum were derived by Euler.
The basic assumption is that, at any instant of time, all phases are present at every material point, and momentum and mass balance equations are postulated. Like other models, mixture theory requires constitutive relations to close the system of equations. Krzysztof Wilmanski extended the model by introducing a balance equation of porosity. [2 ...