enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    In special relativity, the rule that Wilczek called "Newton's Zeroth Law" breaks down: the mass of a composite object is not merely the sum of the masses of the individual pieces. [85]: 33 Newton's first law, inertial motion, remains true. A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the ...

  3. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second. Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it.

  4. Reduced mass - Wikipedia

    en.wikipedia.org/wiki/Reduced_mass

    Using Newton's second law, the force exerted by a body (particle 2) on another body (particle 1) is: =. The force exerted by particle 1 on particle 2 is: = According to Newton's third law, the force that particle 2 exerts on particle 1 is equal and opposite to the force that particle 1 exerts on particle 2: =

  5. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The center of mass, in accordance with the law of conservation of momentum, remains in place. In physics , specifically classical mechanics , the three-body problem is to take the initial positions and velocities (or momenta ) of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    Looking at the above formula for invariant mass of a system, one sees that, when a single massive object is at rest (v = 0, p = 0), there is a non-zero mass remaining: m 0 = E/c 2. The corresponding energy, which is also the total energy when a single particle is at rest, is referred to as "rest energy".

  8. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic expressions for E and p obey the relativistic energy–momentum relation: [12] = where the m is the rest mass, or the invariant mass for systems, and E is the total energy. The equation is also valid for photons, which have m = 0 : E 2 − ( p c ) 2 = 0 {\displaystyle E^{2}-(pc)^{2}=0} and therefore E = p c {\displaystyle E=pc}

  9. Vis viva - Wikipedia

    en.wikipedia.org/wiki/Vis_viva

    Newton’s Third Law of Motion (for every action there is an equal and opposite reaction) is also equivalent to the principle of conservation of momentum. Leibniz accepted the principle of conservation of momentum, but rejected the Cartesian version of it. [ 2 ]