Search results
Results from the WOW.Com Content Network
Byte pair encoding [1] [2] (also known as BPE, or digram coding) [3] is an algorithm, first described in 1994 by Philip Gage, for encoding strings of text into smaller strings by creating and using a translation table. [4] A slightly-modified version of the algorithm is used in large language model tokenizers.
To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).
High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:
One encoder-decoder block A Transformer is composed of stacked encoder layers and decoder layers. Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding ...
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...
The output of a priority encoder is the binary representation of the index of the most significant activated line. In contrast to the simple encoder, if two or more inputs to the priority encoder are active at the same time, the input having the highest priority will take precedence. It is an improvement on a simple encoder because it can ...
These examples show how various data sequences would be encoded by the COBS algorithm. In the examples, all bytes are expressed as hexadecimal values, and encoded data is shown with text formatting to illustrate various features: Bold indicates a data byte which has not been altered by encoding. All non-zero data bytes remain unaltered.
For example, the sequence "ABBCAB" could become 0.011201 3, in arithmetic coding as a value in the interval [0, 1). The next step is to encode this ternary number using a fixed-point binary number of sufficient precision to recover it, such as 0.0010110001 2 – this is only 10 bits; 2 bits are saved in comparison with naïve block encoding ...