Search results
Results from the WOW.Com Content Network
In business, data mining is the analysis of historical business activities, stored as static data in data warehouse databases. The goal is to reveal hidden patterns and trends. Data mining software uses advanced pattern recognition algorithms to sift through large amounts of data to assist in discovering previously unknown strategic business ...
Business intelligence (BI) consists of strategies, methodologies, and technologies used by enterprises for data analysis and management of business information. [1] Common functions of BI technologies include reporting, online analytical processing, analytics, dashboard development, data mining, process mining, complex event processing, business performance management, benchmarking, text ...
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
Data Mining Extensions (DMX) is a query language for data mining models supported by Microsoft's SQL Server Analysis Services product. [1] Like SQL, it supports a data definition language (DDL), data manipulation language (DML) and a data query language (DQL), all three with SQL-like syntax. Whereas SQL statements operate on relational tables ...
For example, a company might wish to summarize financial data by product, by time-period, and by city to compare actual and budget expenses. Product, time, city and scenario (actual and budget) are the data's dimensions. [3] Cube is a shorthand for multidimensional dataset, given that data can have an arbitrary number of dimensions.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
In business intelligence, data classification is "the construction of some kind of a method for making judgments for a continuing sequence of cases, where each new case must be assigned to one of pre-defined classes." [1] Data Classification has close ties to data clustering, but where data clustering is descriptive, data classification is ...
SEMMA is an acronym that stands for Sample, Explore, Modify, Model, and Assess. It is a list of sequential steps developed by SAS Institute, one of the largest producers of statistics and business intelligence software. It guides the implementation of data mining applications. [1]