Search results
Results from the WOW.Com Content Network
Electron-beam physical vapor deposition, or EBPVD, is a form of physical vapor deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum. The electron beam causes atoms from the target to transform into the gaseous phase.
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a ...
Electron-beam machining is a process in which high-velocity electrons are concentrated into a narrow beam with a very high planar power density. The beam cross-section is then focused and directed toward the work piece, creating heat and vaporizing the material. Electron-beam machining can be used to accurately cut or bore a wide variety of metals.
Plasma (argon-only on the left, argon and silane on the right) inside a prototype LEPECVD reactor at the LNESS laboratory in Como, Italy.. Low-energy plasma-enhanced chemical vapor deposition (LEPECVD) is a plasma-enhanced chemical vapor deposition technique used for the epitaxial deposition of thin semiconductor (silicon, germanium and SiGe alloys) films.
Electron-beam-induced deposition (EBID) is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a scanning electron microscope , which results in high spatial accuracy (potentially below one nanometer) and the possibility ...
When the vapor source is a liquid or solid, the process is called physical vapor deposition (PVD), [3] which is used in semiconductor devices, thin-film solar panels, and glass coatings. [4] When the source is a chemical vapor precursor, the process is called chemical vapor deposition (CVD).
The mean free path turns out to be minimal (5–10 Å) in the energy range of low-energy electrons (20–200 eV). [1] This effective attenuation means that only a few atomic layers are sampled by the electron beam, and, as a consequence, the contribution of deeper atoms to the diffraction progressively decreases.
Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices , including transistors . [ 1 ] MBE is used to make diodes and MOSFETs (MOS field-effect transistors ) at microwave frequencies, and to manufacture the lasers used to read optical discs ...