Search results
Results from the WOW.Com Content Network
A full adder can also be constructed from two half adders by connecting and to the input of one half adder, then taking its sum-output as one of the inputs to the second half adder and as its other input, and finally the carry outputs from the two half-adders are connected to an OR gate.
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.
The half subtractor is a combinational circuit which is used to perform subtraction of two bits. It has two inputs, the minuend X {\displaystyle X} and subtrahend Y {\displaystyle Y} and two outputs the difference D {\displaystyle D} and borrow out B out {\displaystyle B_{\text{out}}} .
A conditional sum adder [3] is a recursive structure based on the carry-select adder. In the conditional sum adder, the MUX level chooses between two n/2-bit inputs that are themselves built as conditional-sum adder. The bottom level of the tree consists of pairs of 2-bit adders (1 half adder and 3 full adders) plus 2 single-bit multiplexers.
Add a half adder for weight 2, outputs: 1 weight-2 wire, 1 weight-4 wire; Add a full adder for weight 4, outputs: 1 weight-4 wire, 1 weight-8 wire; Add a full adder for weight 8, and pass the remaining wire through, outputs: 2 weight-8 wires, 1 weight-16 wire; Add a full adder for weight 16, outputs: 1 weight-16 wire, 1 weight-32 wire
The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left.
An example of a 4-bit Kogge–Stone adder is shown in the diagram. Each vertical stage produces a "propagate" and a "generate" bit, as shown. The culminating generate bits (the carries) are produced in the last stage (vertically), and these bits are XOR'd with the initial propagate after the input (the red boxes) to produce the sum bits. E.g., the first (least-significant) sum bit is ...