Search results
Results from the WOW.Com Content Network
In general, the same inversion transforms the given line L and given circle C into two new circles, c 1 and c 2. Thus, the problem becomes that of finding a solution line tangent to the two inverted circles, which was solved above. There are four such lines, and re-inversion transforms them into the four solution circles of the Apollonius problem.
Let O 1 and O 2 be the centers of the two circles, C 1 and C 2 and let r 1 and r 2 be their radii, with r 1 > r 2; in other words, circle C 1 is defined as the larger of the two circles. Two different methods may be used to construct the external and internal tangent lines. External tangents Construction of the outer tangent
Inversion in a circle centered on P transforms the two given circles into new circles, and the solution circle into a line. Therefore, the transformed solution is a line that is tangent to the two transformed given circles. There are four such solution lines, which may be constructed from the external and internal homothetic centers of the two ...
In geometry, the limiting points of two disjoint circles A and B in the Euclidean plane are points p that may be defined by any of the following equivalent properties: The pencil of circles defined by A and B contains a degenerate (radius zero) circle centered at p. [1] Every circle or line that is perpendicular to both A and B passes through p ...
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.
Creating the one point or two points in the intersection of two circles (if they intersect). For example, starting with just two distinct points, we can create a line or either of two circles (in turn, using each point as centre and passing through the other point). If we draw both circles, two new points are created at their intersections.
Monge's theorem states that the three such points given by the three pairs of circles always lie in a straight line. In the case of two of the circles being of equal size, the two external tangent lines are parallel. In this case Monge's theorem asserts that the other two intersection points must lie on a line parallel to those two external ...
The lune of Hippocrates is the upper left shaded area. It has the same area as the lower right shaded triangle. In geometry, the lune of Hippocrates, named after Hippocrates of Chios, is a lune bounded by arcs of two circles, the smaller of which has as its diameter a chord spanning a right angle on the larger circle.