enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    The repeating sequence of digits is called "repetend" which has a certain length greater than 0, also called "period". [5] In base 10, a fraction has a repeating decimal if and only if in lowest terms, its denominator has any prime factors besides 2 or 5, or in other words, cannot be expressed as 2 m 5 n, where m and n are non-negative integers.

  3. Proof that 22/7 exceeds π - Wikipedia

    en.wikipedia.org/wiki/Proof_that_22/7_exceeds_π

    Julian Havil ends a discussion of continued fraction approximations of π with the result, describing it as "impossible to resist mentioning" in that context. [2] The purpose of the proof is not primarily to convince its readers that ⁠ 22 / 7 ⁠ (or ⁠3 + 1 / 7 ⁠) is indeed bigger than π. Systematic methods of computing the value of π ...

  4. 142857 - Wikipedia

    en.wikipedia.org/wiki/142857

    It is the repeating part in the decimal expansion of the rational number ⁠ 1 / 7 ⁠ = 0. 142857. Thus, multiples of ⁠ 1 / 7 ⁠ are simply repeated copies of the corresponding multiples of 142857:

  5. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    From the relation to unit fractions, it can be shown that cyclic numbers are of the form of the Fermat quotient b p − 1 − 1 p {\displaystyle {\frac {b^{p-1}-1}{p}}} where b is the number base (10 for decimal ), and p is a prime that does not divide b .

  6. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    S n is the approximation after taking n terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times. (click for detail) He used the first 21 terms to compute an approximation of π correct to 11 decimal places as 3.141 592 653 59. He also improved the formula based on arctan(1) by including a correction:

  7. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction /, where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus .

  8. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...

  9. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    Pi, (equal to 3.14159265358979323846264338327950288) is a mathematical sequence of numbers. The table below is a brief chronology of computed numerical values of, or ...