enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  3. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    The coin toss in cricket is more important than in other games because in many situations it can lead a team winning or losing the game. Factors such as pitch conditions, weather and the time of day are considered by the team captain who wins the toss. Now there are websites such as flip a coin online which domestic sports team use to toss the ...

  4. Feller's coin-tossing constants - Wikipedia

    en.wikipedia.org/wiki/Feller's_coin-tossing...

    The exact probability p(n,2) can be calculated either by using Fibonacci numbers, p(n,2) = + or by solving a direct recurrence relation leading to the same result. For higher values of k {\displaystyle k} , the constants are related to generalizations of Fibonacci numbers such as the tribonacci and tetranacci numbers.

  5. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have /

  6. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    For example, a fair coin toss is a Bernoulli trial. When a fair coin is flipped once, the theoretical probability that the outcome will be heads is equal to 1 ⁄ 2. Therefore, according to the law of large numbers, the proportion of heads in a "large" number of coin flips "should be" roughly 1 ⁄ 2.

  7. Talk:Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Talk:Checking_whether_a...

    To make the calculations of the factorials easy to make. 11! (eleven factorial) 7! (seven factorial) and 3! (three factorial) are very easy to calc on your typical scientific calculator. If a more reasonable number of coin toss was choosen, say 10,000 coin tosses, it would be impossible to calculate the factorials using a high school calculator.

  8. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin.

  9. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    For example, if x represents a sequence of coin flips, then the associated Bernoulli sequence is the list of natural numbers or time-points for which the coin toss outcome is heads. So defined, a Bernoulli sequence Z x {\displaystyle \mathbb {Z} ^{x}} is also a random subset of the index set, the natural numbers N {\displaystyle \mathbb {N} } .