Search results
Results from the WOW.Com Content Network
The denominator of a Rule of 78s loan is the sum of the integers between 1 and n, inclusive, where n is the number of payments. For a twelve-month loan, the sum of numbers from 1 to 12 is 78 (1 + 2 + 3 + . . . +12 = 78). For a 24-month loan, the denominator is 300. The sum of the numbers from 1 to n is given by the equation n * (n+1) / 2.
For instance, if Goldbach's conjecture is true but unprovable, then the result of rounding the following value, n, up to the next integer cannot be determined: either n =1+10 − k where k is the first even number greater than 4 which is not the sum of two primes, or n =1 if there is no such number. The rounded result is 2 if such a number k ...
In the second line, the number one is added to the fraction, and again Excel displays only 15 figures. In the third line, one is subtracted from the sum using Excel. Because the sum in the second line has only eleven 1's after the decimal, the difference when 1 is subtracted from this displayed value is three 0's followed by a string of eleven 1's.
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula c q ( n ) = ∑ 1 ≤ a ≤ q ( a , q ) = 1 e 2 π i a q n , {\displaystyle c_{q}(n)=\sum _{1\leq a\leq q \atop (a,q)=1}e^{2\pi i{\tfrac {a}{q}}n},}
Explicitly this says that any multiset of 2n − 1 integers has a subset of size n the sum of whose elements is a multiple of n, but that the same is not true of multisets of size 2n − 2. (Indeed, the lower bound is easy to see: the multiset containing n − 1 copies of 0 and n − 1 copies of 1 contains no n-subset summing to a multiple of n
The concept of a decimal digit sum is closely related to, but not the same as, the digital root, which is the result of repeatedly applying the digit sum operation until the remaining value is only a single digit. The decimal digital root of any non-zero integer will be a number in the range 1 to 9, whereas the digit sum can take any value.