enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  3. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  4. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    One example is the squared Frobenius norm, which can be viewed as an -norm acting either entrywise, or on the singular values of the matrix: = ‖ ‖ = | | = ⁡ =. In the multivariate case the effect of regularizing with the Frobenius norm is the same as the vector case; very complex models will have larger norms, and, thus, will be penalized ...

  5. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm.Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces.

  6. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    An example of such a space is the Fréchet space (), whose definition can be found in the article on spaces of test functions and distributions, because its topology is defined by a countable family of norms but it is not a normable space because there does not exist any norm ‖ ‖ on () such that the topology this norm induces is equal to .

  7. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  8. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.

  9. Dual norm - Wikipedia

    en.wikipedia.org/wiki/Dual_norm

    The Frobenius norm defined by ‖ ‖ = = = | | = ⁡ = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...