enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 but not 5 ≥ 7. The relation "has a common factor greater than 1 with" between natural numbers greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1 ...

  3. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  4. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

  5. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    An example of a left quasi-reflexive relation is a left Euclidean relation, which is always left quasi-reflexive but not necessarily right quasi-reflexive, and thus not necessarily quasi-reflexive. An example of a coreflexive relation is the relation on integers in which each odd number is related to itself and there are no other relations. The ...

  6. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    However, there is a formula for finding the number of relations that are simultaneously reflexive, symmetric, and transitive – in other words, equivalence relations – (sequence A000110 in the OEIS), those that are symmetric and transitive, those that are symmetric, transitive, and antisymmetric, and those that are total, transitive, and ...

  7. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    Of particular importance are relations that satisfy certain combinations of properties. A partial order is a relation that is reflexive, antisymmetric, and transitive, [3] an equivalence relation is a relation that is reflexive, symmetric, and transitive, [4] a function is a relation that is right-unique and left-total (see below). [5] [6]

  8. Preorder - Wikipedia

    en.wikipedia.org/wiki/Preorder

    The converse is not true: most directed graphs are neither reflexive nor transitive. A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph.

  9. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    Given any function in variables with values in an abelian group, a symmetric function can be constructed by summing values of over all permutations of the arguments. Similarly, an anti-symmetric function can be constructed by summing over even permutations and subtracting the sum over odd permutations .