enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    For the definitions below, we first present the linear program in the so-called equational form: . maximize subject to = and . where: and are vectors of size n (the number of variables);

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    The strong duality theorem states that if the primal has an optimal solution, x *, then the dual also has an optimal solution, y *, and c T x * =b T y *. A linear program can also be unbounded or infeasible. Duality theory tells us that if the primal is unbounded then the dual is infeasible by the weak duality theorem.

  4. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    In each iteration of the method, we increase the penalty coefficient (e.g. by a factor of 10), solve the unconstrained problem and use the solution as the initial guess for the next iteration. Solutions of the successive unconstrained problems will asymptotically converge to the solution of the original constrained problem.

  5. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The combined LP has both x and y as variables: Maximize 1. subject to Ax ≤ b, A T y ≥ c, c T x ≥ b T y, x ≥ 0, y ≥ 0. If the combined LP has a feasible solution (x,y), then by weak duality, c T x = b T y. So x must be a maximal solution of the primal LP and y must be a minimal solution of the dual LP. If the combined LP has no ...

  6. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    The storage and computation overhead is such that the standard simplex method is a prohibitively expensive approach to solving large linear programming problems. In each simplex iteration, the only data required are the first row of the tableau, the (pivotal) column of the tableau corresponding to the entering variable and the right-hand-side.

  7. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...

  8. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    Consider a family of convex optimization problems of the form: minimize f(x) s.t. x is in G, where f is a convex function and G is a convex set (a subset of an Euclidean space R n). Each problem p in the family is represented by a data-vector Data( p ), e.g., the real-valued coefficients in matrices and vectors representing the function f and ...

  9. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).