enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trinomial expansion - Wikipedia

    en.wikipedia.org/wiki/Trinomial_expansion

    Layers of Pascal's pyramid derived from coefficients in an upside-down ternary plot of the terms in the expansions of the powers of a trinomial – the number of terms is clearly a triangular number. In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    These factorizations work not only over the complex numbers, but also over any field, where either –1, 2 or –2 is a square. In a finite field , the product of two non-squares is a square; this implies that the polynomial x 4 + 1 , {\displaystyle x^{4}+1,} which is irreducible over the integers, is reducible modulo every prime number .

  4. Calculator input methods - Wikipedia

    en.wikipedia.org/wiki/Calculator_input_methods

    On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [1] [2] [3] On an expression or formula calculator, one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.

  5. Trinomial - Wikipedia

    en.wikipedia.org/wiki/Trinomial

    For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.

  6. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The polynomial P = x 4 + 1 is irreducible over Q but not over any finite field. On any field extension of F 2, P = (x + 1) 4. On every other finite field, at least one of −1, 2 and −2 is a square, because the product of two non-squares is a square and so we have; If =, then = (+) ().

  7. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If one of these values is 0, we have a linear factor. If the values are nonzero, we can list the possible factorizations for each. Now, 2 can only factor as 1×2, 2×1, (−1)×(−2), or (−2)×(−1). Therefore, if a second degree integer polynomial factor exists, it must take one of the values p(0) = 1, 2, −1, or −2. and likewise for p(1).

  8. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

  9. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    n 2 < D < (n + 1) 2, so in particular 0 < √ D − n < 1. If the square root of D is rational, then it can be written as the irreducible fraction p/q, so that q is the smallest possible denominator, and hence the smallest number for which q √ D is also an integer. Then: (√ D − n)q √ D = qD − nq √ D. which is thus also an integer.