enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic hysteresis - Wikipedia

    en.wikipedia.org/wiki/Magnetic_hysteresis

    The downward curve after saturation, along with the lower return curve, form the main loop. The intercepts h c and m rs are the coercivity and saturation remanence . Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it.

  3. Bean's critical state model - Wikipedia

    en.wikipedia.org/wiki/Bean's_critical_state_model

    Calculated magnetization curve for a superconducting slab, based on Bean's model. The superconducting slab is initially at H = 0. Increasing H to critical field H* causes the blue curve; dropping H back to 0 and reversing direction to increase it to -H* causes the green curve; dropping H back to 0 again and increase H to H* causes the orange curve.

  4. Hysteresis - Wikipedia

    en.wikipedia.org/wiki/Hysteresis

    The curves form a hysteresis loop. Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are ...

  5. Saturation (magnetic) - Wikipedia

    en.wikipedia.org/wiki/Saturation_(magnetic)

    Saturation is most clearly seen in the magnetization curve (also called BH curve or hysteresis curve) of a substance, as a bending to the right of the curve (see graph at right). As the H field increases, the B field approaches a maximum value asymptotically , the saturation level for the substance.

  6. Jiles–Atherton model - Wikipedia

    en.wikipedia.org/wiki/Jiles–Atherton_model

    This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2] Jiles–Atherton model enables calculation of minor and major hysteresis loops. [1] The original Jiles–Atherton model is suitable only for isotropic materials. [1]

  7. Vine–Matthews–Morley hypothesis - Wikipedia

    en.wikipedia.org/wiki/Vine–Matthews–Morley...

    The observed magnetic profile for the seafloor around a mid-oceanic ridge agrees closely with the profile predicted by the Vine–Matthews–Morley hypothesis. The Vine–Matthews–Morley hypothesis , also known as the Morley–Vine–Matthews hypothesis , was the first key scientific test of the seafloor spreading theory of continental drift ...

  8. Stoner–Wohlfarth model - Wikipedia

    en.wikipedia.org/wiki/Stoner–Wohlfarth_model

    After this jump, the magnetization remains on the red curve until the field increases past h = 0.5, where it jumps to the blue curve. Usually only the hysteresis loop is plotted; the energy maxima are only of interest if the effect of thermal fluctuations is calculated. [1] The Stoner–Wohlfarth model is a classic example of magnetic hysteresis.

  9. Maximum energy product - Wikipedia

    en.wikipedia.org/wiki/Maximum_energy_product

    The maximum energy product is defined based on the magnetic hysteresis saturation loop (B-H curve), in the demagnetizing portion where the B and H fields are in opposition. It is defined as the maximal value of the product of B and H along this curve (actually, the maximum of the negative of the product, −BH, since they have opposing signs):