Search results
Results from the WOW.Com Content Network
The downward curve after saturation, along with the lower return curve, form the main loop. The intercepts h c and m rs are the coercivity and saturation remanence . Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it.
Calculated magnetization curve for a superconducting slab, based on Bean's model. The superconducting slab is initially at H = 0. Increasing H to critical field H* causes the blue curve; dropping H back to 0 and reversing direction to increase it to -H* causes the green curve; dropping H back to 0 again and increase H to H* causes the orange curve.
The curves form a hysteresis loop. Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are ...
Saturation is most clearly seen in the magnetization curve (also called BH curve or hysteresis curve) of a substance, as a bending to the right of the curve (see graph at right). As the H field increases, the B field approaches a maximum value asymptotically , the saturation level for the substance.
This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2] Jiles–Atherton model enables calculation of minor and major hysteresis loops. [1] The original Jiles–Atherton model is suitable only for isotropic materials. [1]
The observed magnetic profile for the seafloor around a mid-oceanic ridge agrees closely with the profile predicted by the Vine–Matthews–Morley hypothesis. The Vine–Matthews–Morley hypothesis , also known as the Morley–Vine–Matthews hypothesis , was the first key scientific test of the seafloor spreading theory of continental drift ...
After this jump, the magnetization remains on the red curve until the field increases past h = 0.5, where it jumps to the blue curve. Usually only the hysteresis loop is plotted; the energy maxima are only of interest if the effect of thermal fluctuations is calculated. [1] The Stoner–Wohlfarth model is a classic example of magnetic hysteresis.
The maximum energy product is defined based on the magnetic hysteresis saturation loop (B-H curve), in the demagnetizing portion where the B and H fields are in opposition. It is defined as the maximal value of the product of B and H along this curve (actually, the maximum of the negative of the product, −BH, since they have opposing signs):