Search results
Results from the WOW.Com Content Network
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a cycle . [ 1 ]
The trapezoidal rule converges rapidly for periodic functions. This is an easy consequence of the Euler-Maclaurin summation formula , which says that if f {\displaystyle f} is p {\displaystyle p} times continuously differentiable with period T {\displaystyle T} ∑ k = 0 N − 1 f ( k h ) h = ∫ 0 T f ( x ) d x + ∑ k = 1 ⌊ p / 2 ⌋ B 2 k ...
Periodic functions can be identified with functions on a circle; for this reason Fourier series are the subject of Fourier analysis on the circle group, denoted by or . The Fourier transform is also part of Fourier analysis , but is defined for functions on R n {\displaystyle \mathbb {R} ^{n}} .
The Fourier transform of a periodic function cannot be defined using the integral formula directly. In order for integral in Eq.1 to be defined the function must be absolutely integrable. Instead it is common to use Fourier series. It is possible to extend the definition to include periodic functions by viewing them as tempered distributions.
This is a list of some well-known periodic functions. The constant function f ( x ) = c , where c is independent of x , is periodic with any period, but lacks a fundamental period . A definition is given for some of the following functions, though each function may have many equivalent definitions.
It is a periodic, piecewise linear, continuous real function. Like a square wave, the triangle wave contains only odd harmonics. However, the higher harmonics roll off much faster than in a square wave (proportional to the inverse square of the harmonic number as opposed to just the inverse).
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]
From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function. In simpler terms, when you take the DTFT of regularly-spaced samples of a continuous signal, you get repeating (and possibly overlapping) copies of the signal's frequency ...