Search results
Results from the WOW.Com Content Network
In the context of proofs, this phrase is often seen in induction arguments when passing from the base case to the induction step, and similarly, in the definition of sequences whose first few terms are exhibited as examples of the formula giving every term of the sequence. necessary and sufficient
Domain-specific terms must be recategorized into the corresponding mathematical domain. If the domain is unclear, but reasonably believed to exist, it is better to put the page into the root category:mathematics, where it will have a better chance of spotting and classification. See also: Glossary of mathematics
Any irreducible tempered representation is a basic representation, and conversely any basic representation is the sum of a finite number of irreducible tempered representations. More precisely, it is a direct sum of 2 r irreducible tempered representations indexed by the characters of an elementary abelian group R of order 2 r (called the R ...
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
The term differential is used in calculus to refer to an infinitesimal (infinitely small) change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an infinitely small or ...
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
Such states of matter are studied in high-energy physics. In the 20th century, increased understanding of the properties of matter resulted in the identification of many states of matter. This list includes some notable examples.
A body of matter can sometimes be conceptually defined in terms of microscopic degrees of freedom, namely particle spins, a subsystem with a temperature other than that of the whole body. When the body is in its state of internal thermodynamic equilibrium, the temperatures of the entire body and the subsystem must be the same.