Search results
Results from the WOW.Com Content Network
An alternative to explicitly modelling the heteroskedasticity is using a resampling method such as the wild bootstrap. Given that the studentized bootstrap, which standardizes the resampled statistic by its standard error, yields an asymptotic refinement, [13] heteroskedasticity-robust standard errors remain nevertheless useful.
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics , a sequence of random variables is homoscedastic ( / ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k / ) if all its random variables have the same finite variance ; this is also known as homogeneity of variance .
The resulting likelihood function is mathematically similar to the tobit model for censored dependent variables, a connection first drawn by James Heckman in 1974. [2] Heckman also developed a two-step control function approach to estimate this model, [ 3 ] which avoids the computational burden of having to estimate both equations jointly ...
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics , a sequence of random variables is homoscedastic ( / ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k / ) if all its random variables have the same finite variance ; this is also known as homogeneity of variance.
An alternative to the White test is the Breusch–Pagan test, where the Breusch-Pagan test is designed to detect only linear forms of heteroskedasticity. Under certain conditions and a modification of one of the tests, they can be found to be algebraically equivalent.
The Brown–Forsythe test uses the median instead of the mean in computing the spread within each group (¯ vs. ~, above).Although the optimal choice depends on the underlying distribution, the definition based on the median is recommended as the choice that provides good robustness against many types of non-normal data while retaining good statistical power. [3]
Notice the relation between the variance and the mean, which implies, for example, heteroscedasticity in a linear model. Therefore, the goal is to find a function g {\displaystyle g} such that Y = g ( X ) {\displaystyle Y=g(X)} has a variance independent (at least approximately) of its expectation.
Step 3: Select the equation with the highest R 2 and lowest standard errors to represent heteroscedasticity. Step 4: Perform a t-test on the equation selected from step 3 on γ 1. If γ 1 is statistically significant, reject the null hypothesis of homoscedasticity.