enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci search technique - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_search_technique

    If the data is stored on a magnetic tape where seek time depends on the current head position, a tradeoff between longer seek time and more comparisons may lead to a search algorithm that is skewed similarly to Fibonacci search. Fibonacci search is derived from Golden section search, an algorithm by Jack Kiefer (1953) to search for the maximum ...

  3. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    With the exceptions of 1, 8 and 144 (F 1 = F 2, F 6 and F 12) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number (Carmichael's theorem). [56] As a result, 8 and 144 ( F 6 and F 12 ) are the only Fibonacci numbers that are the product of other Fibonacci numbers.

  4. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Fibonacci search technique: search a sorted sequence using a divide and conquer algorithm that narrows down possible locations with the aid of Fibonacci numbers; Jump search (or block search): linear search on a smaller subset of the sequence; Predictive search: binary-like search which factors in magnitude of search term versus the high and ...

  5. Lagged Fibonacci generator - Wikipedia

    en.wikipedia.org/wiki/Lagged_Fibonacci_generator

    A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...

  6. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The n-Fibonacci constant is the ratio toward which adjacent -Fibonacci numbers tend; it is also called the n th metallic mean, and it is the only positive root of =. For example, the case of n = 1 {\displaystyle n=1} is 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} , or the golden ratio , and the case of n = 2 {\displaystyle n=2} is 1 + 2 ...

  7. Van Emde Boas tree - Wikipedia

    en.wikipedia.org/wiki/Van_Emde_Boas_tree

    Moreover, unlike a binary search tree, most of this space is being used to store data: even for billions of elements, the pointers in a full vEB tree number in the thousands. The implementation described above uses pointers and occupies a total space of O(M) = O(2 m), proportional to the size of the key universe. This can be seen as follows.

  8. Heap (data structure) - Wikipedia

    en.wikipedia.org/wiki/Heap_(data_structure)

    The Boost C++ libraries include a heaps library. Unlike the STL, it supports decrease and increase operations, and supports additional types of heap: specifically, it supports d-ary, binomial, Fibonacci, pairing and skew heaps. There is a generic heap implementation for C and C++ with D-ary heap and B-heap support. It provides an STL-like API.

  9. Fibonacci coding - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_coding

    To encode an integer N: . Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.; If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0).