enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poincaré metric - Wikipedia

    en.wikipedia.org/wiki/Poincaré_metric

    In mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature.It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces.

  3. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance.

  4. Chebyshev distance - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_distance

    A sphere formed using the Chebyshev distance as a metric is a cube with each face perpendicular to one of the coordinate axes, but a sphere formed using Manhattan distance is an octahedron: these are dual polyhedra, but among cubes, only the square (and 1-dimensional line segment) are self-dual polytopes.

  5. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    A function : is monotone in this topological sense if and only if it is non-increasing or non-decreasing, which is the usual meaning of "monotone function" in real analysis. A function between topological spaces is (sometimes) called a proper map if every fiber is a compact subspace of its domain. However, many authors use other non-equivalent ...

  6. Tietze extension theorem - Wikipedia

    en.wikipedia.org/wiki/Tietze_extension_theorem

    Pavel Urysohn. In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem or Urysohn-Brouwer lemma [1]) states that any real-valued, continuous function on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary.

  7. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...

  8. Urysohn's lemma - Wikipedia

    en.wikipedia.org/wiki/Urysohn's_lemma

    Urysohn's lemma is commonly used to construct continuous functions with various properties on normal spaces. It is widely applicable since all metric spaces and all compact Hausdorff spaces are normal. The lemma is generalised by (and usually used in the proof of) the Tietze extension theorem.

  9. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...