Search results
Results from the WOW.Com Content Network
Domains of major fields of physics. Branches of physics include classical mechanics; thermodynamics and statistical mechanics; electromagnetism and photonics; relativity; quantum mechanics, atomic physics, and molecular physics; optics and acoustics; condensed matter physics; high-energy particle physics and nuclear physics; cosmology; and interdisciplinary fields.
Physics – natural science that involves the study of matter [1] and its motion through spacetime, along with related concepts such as energy and force. [2] More broadly, it is the general analysis of nature , conducted in order to understand how the universe behaves.
In physics, matter is sometimes equated with particles that exhibit rest mass (i.e., that cannot travel at the speed of light), such as quarks and leptons. However, in both physics and chemistry, matter exhibits both wave-like and particle-like properties (the so-called wave–particle duality). [9] [10] [11]
Time crystals: A state of matter where an object can have movement even at its lowest energy state. Hidden states of matter: Phases that are unattainable or do not exist in thermal equilibrium, but can be induced e.g. by photoexcitation. Microphase separation: Constituent units forming diverse phases while also keeping united.
The physics of elementary particles is on an even smaller scale since it is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in particle accelerators. On this scale, ordinary, commonsensical notions of ...
In standard cosmology, there are three components of the universe: matter, radiation, and dark energy. This matter is anything whose energy density scales with the inverse cube of the scale factor, i.e., ρ ∝ a −3, while radiation is anything whose energy density scales to the inverse fourth power of the scale factor (ρ ∝ a −4).
Examples of large transformations between rest energy (of matter) and other forms of energy (e.g., kinetic energy into particles with rest mass) are found in nuclear physics and particle physics. Often, however, the complete conversion of matter (such as atoms) to non-matter (such as photons) is forbidden by conservation laws.
Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons , while the study of combination of protons and neutrons is called nuclear physics .