Search results
Results from the WOW.Com Content Network
The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).
Interpreting Mauchly's test is fairly straightforward. When the probability of Mauchly's test statistic is greater than or equal to α {\displaystyle \alpha } (i.e., p > α {\displaystyle \alpha } , with α {\displaystyle \alpha } commonly being set to .05), we fail to reject the null hypothesis that the variances are equal.
Some statistical software packages like PSPP, SPSS and SYSTAT label the standardized regression coefficients as "Beta" while the unstandardized coefficients are labeled "B". Others, like DAP/SAS label them "Standardized Coefficient". Sometimes the unstandardized variables are also labeled as "b".
The Brown–Forsythe test uses the median instead of the mean in computing the spread within each group (¯ vs. ~, above).Although the optimal choice depends on the underlying distribution, the definition based on the median is recommended as the choice that provides good robustness against many types of non-normal data while retaining good statistical power. [3]
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
McNemar's test is a statistical test used on paired nominal data.It is applied to 2 × 2 contingency tables with a dichotomous trait, with matched pairs of subjects, to determine whether the row and column marginal frequencies are equal (that is, whether there is "marginal homogeneity").
The F-test in ANOVA is an example of an omnibus test, which tests the overall significance of the model. A significant F test means that among the tested means, at least two of the means are significantly different, but this result doesn't specify exactly which means are different one from the other.
Consider the model ^ = {} =. The Ramsey test then tests whether (), (), …, has any power in explaining y.This is executed by estimating the following linear regression = + ^ + + ^ +,