Search results
Results from the WOW.Com Content Network
In computing, CUDA is a proprietary [1] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
Painting of Blaise Pascal, eponym of architecture. Pascal is the codename for a GPU microarchitecture developed by Nvidia, as the successor to the Maxwell architecture. The architecture was first introduced in April 2016 with the release of the Tesla P100 (GP100) on April 5, 2016, and is primarily used in the GeForce 10 series, starting with the GeForce GTX 1080 and GTX 1070 (both using the ...
It was Nvidia's first chip to feature Tensor Cores, specially designed cores that have superior deep learning performance over regular CUDA cores. [4] The architecture is produced with TSMC's 12 nm FinFET process. The Ampere microarchitecture is the successor to Volta.
CUDA is a parallel computing platform and programming model that higher level languages can use to exploit parallelism. In CUDA, the kernel is executed with the aid of threads. The thread is an abstract entity that represents the execution of the kernel. A kernel is a function that compiles to run on a special device. Multi threaded ...
The simplest way to understand SIMT is to imagine a multi-core system, where each core has its own register file, its own ALUs (both SIMD and Scalar) and its own data cache, but that unlike a standard multi-core system which has multiple independent instruction caches and decoders, as well as multiple independent Program Counter registers, the ...
The claimed theoretical single-precision processing power for Tesla-based cards given in FLOPS may be hard to reach in real-world workloads. [3]In G80/G90/GT200, each Streaming Multiprocessor (SM) contains 8 Shader Processors (SP, or Unified Shader, or CUDA Core) and 2 Special Function Units (SFU).
Note that the previous generation Tesla could dual-issue MAD+MUL to CUDA cores and SFUs in parallel, but Fermi lost this ability as it can only issue 32 instructions per cycle per SM which keeps just its 32 CUDA cores fully utilized. [3] Therefore, it is not possible to leverage the SFUs to reach more than 2 operations per CUDA core per cycle.
These features rely on CUDA cores for hardware acceleration. SDK 7 supports two forms of adaptive quantization; Spatial AQ (H.264 and HEVC) and Temporal AQ (H.264 only). Nvidia's consumer-grade (GeForce) cards and some of its lower-end professional Quadro cards are restricted to three simultaneous encoding jobs. Its higher-end Quadro cards do ...