Search results
Results from the WOW.Com Content Network
This color schlieren image reveals thermal convection from a human hand (in silhouette form) to the surrounding still atmosphere. Two types of convective heat transfer may be distinguished: Free or natural convection : when fluid motion is caused by buoyancy forces that result from the density variations due to variations of thermal ± ...
Convection, especially Rayleigh–Bénard convection, where the convecting fluid is contained by two rigid horizontal plates, is a convenient example of a pattern-forming system. When heat is fed into the system from one direction (usually below), at small values it merely diffuses ( conducts ) from below upward, without causing fluid flow.
Convection is caused by yeast releasing CO2. In fluid dynamics, a convection cell is the phenomenon that occurs when density differences exist within a body of liquid or gas. These density differences result in rising and/or falling convection currents, which are the key characteristics of a convection cell. When a volume of fluid is heated, it ...
Another form of convection is forced convection. In this case, the fluid is forced to flow by using a pump, fan, or other mechanical means. Convective heat transfer , or simply, convection, is the transfer of heat from one place to another by the movement of fluids , a process that is essentially the transfer of heat via mass transfer .
On Earth, the Rayleigh number for convection within Earth's mantle is estimated to be of order 10 7, which indicates vigorous convection. This value corresponds to whole mantle convection (i.e. convection extending from the Earth's surface to the border with the core). On a global scale, surface expression of this convection is the tectonic ...
In fluid dynamics, convective mixing is the vertical transport of a fluid and its properties. In many important ocean and atmospheric phenomena, convection is driven by density differences in the fluid, e.g. the sinking of cold, dense water in polar regions of the world's oceans; and the rising of warm, less-dense air during the formation of cumulonimbus clouds and hurricanes.
The convection patterns are the most carefully examined example of self-organizing nonlinear systems. [4] [5] Time-dependent self-similar analytic solutions are known for the velocity fields and for the temperature distribution as well. [6] [7] Buoyancy, and hence gravity, are responsible for the
The first case is when natural convection aids forced convection. This is seen when the buoyant motion is in the same direction as the forced motion, thus accelerating the boundary layer and enhancing the heat transfer. [5] Transition to turbulence, however, can be delayed. [6] An example of this would be a fan blowing upward on a hot plate.