Search results
Results from the WOW.Com Content Network
Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.
Radioactive iodine-131 is a common fission product; it was a major component of the radioactivity released from the Chernobyl disaster, leading to nine fatal cases of pediatric thyroid cancer and hypothyroidism. On the other hand, radioactive iodine is used in the diagnosis and treatment of many diseases of the thyroid precisely because of the ...
The typical adult dose is one 130 mg tablet per 24 hours, supplying 100 mg (100,000 micrograms) of ionic iodine (the typical daily dose of iodine for normal health is on the order of 100 micrograms). Ingestion of this large dose of non-radioactive iodine minimises the uptake of radioactive iodine by the thyroid gland. [19]
If a person consumes a dose of one of these chemical compounds, his or her thyroid may saturate with stable iodine, preventing accumulation of radioactive iodine found after a nuclear meltdown or explosion.
Iodinated contrast contains iodine.It is the main type of radiocontrast used for intravenous administration.Iodine has a particular advantage as a contrast agent for radiography because its innermost electron ("k-shell") binding energy is 33.2 keV, similar to the average energy of x-rays used in diagnostic radiography.
Emergency 130 milligrams potassium iodide doses provide 100 mg iodide (the other 30 mg is the potassium in the compound), [17] which is roughly 700 times larger than the normal nutritional need (see recommended dietary allowance) for iodine, which is 150 micrograms (0.15 mg) of iodine (as iodide) per day for an adult.
Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).
Iodine-124 can be made by numerous nuclear reactions via a cyclotron. The most common starting material used is 124 Te. Iodine-124 as the iodide salt can be used to directly image the thyroid using positron emission tomography (PET). [9] Iodine-124 can also be used as a PET radiotracer with a usefully longer half-life compared with fluorine-18 ...