Search results
Results from the WOW.Com Content Network
The stability function of an explicit Runge–Kutta method is a polynomial, so explicit Runge–Kutta methods can never be A-stable. [32] If the method has order p, then the stability function satisfies () = + (+) as . Thus, it is of interest to study quotients of polynomials of given degrees that approximate the exponential function the best.
The Runge–Kutta–Fehlberg method has two methods of orders 5 and 4; it is sometimes dubbed RKF45 . Its extended Butcher Tableau is: / / / / / / / / / / / / / / / / / / / / / / / / / / The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.
The Bogacki–Shampine method is a Runge–Kutta method of order three with four stages with the First Same As Last (FSAL) property, so that it uses approximately three function evaluations per step. It has an embedded second-order method which can be used to implement adaptive step size.
A method is L-stable if it is A-stable and () as , where is the stability function of the method (the stability function of a Runge–Kutta method is a rational function and thus the limit as + is the same as the limit as ).
Moreover, Butcher (1972) showed that the homomorphisms defined by the Runge–Kutta method form a dense subgroup of the Butcher group: in fact he showed that, given a homomorphism φ', there is a Runge–Kutta homomorphism φ agreeing with φ' to order n; and that if given homomorphims φ and φ' corresponding to Runge–Kutta data (A, b) and ...
This page was last edited on 30 March 2007, at 11:08 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may ...
Pages in category "Runge–Kutta methods" The following 12 pages are in this category, out of 12 total. ... Statistics; Cookie statement; Mobile view ...
In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .