Search results
Results from the WOW.Com Content Network
The stability function of an explicit Runge–Kutta method is a polynomial, so explicit Runge–Kutta methods can never be A-stable. [32] If the method has order p, then the stability function satisfies () = + (+) as . Thus, it is of interest to study quotients of polynomials of given degrees that approximate the exponential function the best.
The Runge–Kutta–Fehlberg method has two methods of orders 5 and 4; it is sometimes dubbed RKF45 . Its extended Butcher Tableau is: / / / / / / / / / / / / / / / / / / / / / / / / / / The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.
The Bogacki–Shampine method is a Runge–Kutta method of order three with four stages with the First Same As Last (FSAL) property, so that it uses approximately three function evaluations per step. It has an embedded second-order method which can be used to implement adaptive step size.
In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .
A method is L-stable if it is A-stable and () as , where is the stability function of the method (the stability function of a Runge–Kutta method is a rational function and thus the limit as + is the same as the limit as ).
They include multistage Runge–Kutta methods that use intermediate collocation points, as well as linear multistep methods that save a finite time history of the solution. John C. Butcher originally coined this term for these methods and has written a series of review papers, [1] [2] [3] a book chapter, [4] and a textbook [5] on the topic.
In mathematics of stochastic systems, the Runge–Kutta method is a technique for the approximate numerical solution of a stochastic differential equation. It is a generalisation of the Runge–Kutta method for ordinary differential equations to stochastic differential equations (SDEs). Importantly, the method does not involve knowing ...
This page was last edited on 30 March 2007, at 11:08 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may ...