enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Klein bottle - Wikipedia

    en.wikipedia.org/wiki/Klein_bottle

    A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.

  3. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    In analogy with the cross-section of a solid, the cross-section of an n-dimensional body in an n-dimensional space is the non-empty intersection of the body with a hyperplane (an (n − 1)-dimensional subspace). This concept has sometimes been used to help visualize aspects of higher dimensional spaces. [7]

  4. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.

  5. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  6. Polyhedron model - Wikipedia

    en.wikipedia.org/wiki/Polyhedron_model

    Net templates are then made. One way is to copy templates from a polyhedron-making book, such as Magnus Wenninger's Polyhedron Models, 1974 (ISBN 0-521-09859-9). A second way is drawing faces on paper or with computer-aided design software and then drawing on them the polyhedron's edges. The exposed nets of the faces are then traced or printed ...

  7. List of Wenninger polyhedron models - Wikipedia

    en.wikipedia.org/wiki/List_of_Wenninger...

    This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger. The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes.

  8. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  9. Menger sponge - Wikipedia

    en.wikipedia.org/wiki/Menger_sponge

    It is created by recursively drilling Greek cross-shaped holes into a cube. [15] [16] The construction is similar to the Menger sponge but with two different-sized cubes. The name comes from the face of the cube resembling a Jerusalem cross pattern. [17] The construction of the Jerusalem cube can be described as follows: Start with a cube.