Search results
Results from the WOW.Com Content Network
The DVD format uses the 48 kHz sampling rate, and its doublings. In digital audio, 48,000 Hz (also represented as 48 kHz or DVD Quality) is a common sampling rate. It has become the standard for professional audio and video. 48 kHz is evenly divisible by 24, a common frame rate for media, such as film, unlike 44.1 kHz. [i]
Sampling rate Use 8,000 Hz Telephone and encrypted walkie-talkie, wireless intercom and wireless microphone transmission; adequate for human speech but without sibilance (ess sounds like eff (/s/, /f/)). 11,025 Hz One quarter the sampling rate of audio CDs; used for lower-quality PCM, MPEG audio and for audio analysis of subwoofer bandpasses.
The selection of the sample rate was based primarily on the need to reproduce the audible frequency range of 20–20,000 Hz (20 kHz). The Nyquist–Shannon sampling theorem states that a sampling rate of more than twice the maximum frequency of the signal to be recorded is needed, resulting in a required rate of greater than 40 kHz.
Whereas DVD-Video audio formats such as Dolby Digital and DTS can be sent via the player's digital output to a receiver for conversion to analog form and distribution to speakers, DVD-Audio is not allowed to be delivered via unencrypted digital audio link at sample rates higher than 48 kHz (i.e., ordinary DVD-Video quality) due to concerns ...
The audio bit rate for a Red Book audio CD is 1,411,200 bits per second (1,411 kbit/s) or 176,400 bytes per second; 2 channels × 44,100 samples per second per channel × 16 bits per sample. Audio data coming in from a CD is contained in sectors, each sector being 2,352 bytes, and with 75 sectors containing 1 second of audio.
These bits are redundant when real-time audio is transmitted (the receiver can observe the sample rate directly), but are useful if AES3 data is recorded or otherwise stored. Options are unspecified, 48 kHz (the default), 44.1 kHz, and 32 kHz. Additional sample rate options may be indicated in the extended sample rate field (see below).
Possible bitrate and latency combinations compared with other audio formats. Opus supports constant and variable bitrate encoding from 6 kbit/s to 510 kbit/s (or up to 256 kbit/s per channel for multi-channel tracks), frame sizes from 2.5 ms to 60 ms, and five sampling rates from 8 kHz (with 4 kHz bandwidth) to 48 kHz (with 20 kHz bandwidth, the human hearing range).
Therefore, the normalized frequency unit is important when converting normalized results into physical units. Example of plotting samples of a frequency distribution in the unit "bins", which are integer values. A scale factor of 0.7812 converts a bin number into the corresponding physical unit (hertz).