Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field.Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar ...
1961 - The magnetopause, boundary between magnetosphere and the solar wind, is observed by Explorer 12. The measurements confirm predictions made in 1931 by Chapman and Ferraro. 1962 - In July, a U.S. H-bomb test (Project Starfish) above the central Pacific Ocean creates a radiation belt of high-energy electrons, parts of which remain until ...
James Van Allen was born on September 7, 1914, on a small farm near Mount Pleasant, Iowa. [5] As a child, he was fascinated by mechanical and electrical devices and was an avid reader of Popular Mechanics and Popular Science magazines.
The magnetosphere is defined by the extent of Earth's magnetic field in space or geospace. It extends above the ionosphere , several tens of thousands of kilometres into space , protecting Earth from the charged particles of the solar wind and cosmic rays that would otherwise strip away the upper atmosphere, including the ozone layer that ...
The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere . The outer boundary of the plasmasphere is known as the plasmapause , which is defined by an order of magnitude drop in plasma density.
The amount of solar wind energy and plasma entering the actual magnetosphere depends on how far it departs from such a "closed" configuration, i.e. the extent to which Interplanetary Magnetic Field field lines manage to cross the boundary. As discussed further below, that extent depends very much on the direction of the Interplanetary Magnetic ...
As with Earth's magnetosphere, the boundary separating the solar wind's plasma from that within Saturn's magnetosphere is called the magnetopause. [2] The magnetopause distance from the planet's center at the subsolar point [ note 1 ] varies widely from 16 to 27 R s (R s =60,330 km is the equatorial radius of Saturn).