enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    12.1 Sundials. 12.2 Multilateration ... Hyperbola as affine image of y = 1/x. ... A skew reflection is a generalization of an ordinary reflection across a line ...

  4. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    This reflection operation turns the gradient of any line into its reciprocal. [ 1 ] Assuming that f {\displaystyle f} has an inverse in a neighbourhood of x {\displaystyle x} and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at x {\displaystyle x} and have a derivative given by the above formula.

  5. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2y 2. Generalizations to more variables yield ...

  6. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In Euclidean geometry, the inversion of a point X with respect to a point P is a point X* such that P is the midpoint of the line segment with endpoints X and X*. In other words, the vector from X to P is the same as the vector from P to X*. The formula for the inversion in P is x* = 2p − x. where p, x and x* are the position vectors of P, X ...

  7. One-dimensional symmetry group - Wikipedia

    en.wikipedia.org/wiki/One-dimensional_symmetry_group

    Now all reflections which map the pattern to itself are of the form a−x where the constant "a" is an integer (the increments of a are 1 again, because we can combine a reflection and a translation to get another reflection, and we can combine two reflections to get a translation). Therefore all isometries can be characterized by an integer ...

  8. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes , whose invention of them in the 17th century revolutionized mathematics by allowing the expression of problems of geometry in terms of algebra and calculus .

  9. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    The graph of an involution (on the real numbers) is symmetric across the line y = x. This is due to the fact that the inverse of any general function will be its reflection over the line y = x. This can be seen by "swapping" x with y. If, in particular, the function is an involution, then its graph is its own reflection