Search results
Results from the WOW.Com Content Network
The name "Fibonacci sequence" was first used by the 19th-century number theorist Édouard Lucas. [22] Solution to Fibonacci rabbit problem: In a growing idealized population, the number of rabbit pairs form the Fibonacci sequence. At the end of the nth month, the number of pairs is equal to F n.
The n th term describes the length of the n th run ... At each stage an alternating sequence of 1s and 0s is inserted between the terms of the previous sequence.
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
Beginning of the Fibonacci sequence on a building in Gothenburg. In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers.. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms.
Normally, the term infinite sequence refers to a sequence that is infinite in one direction, and finite in the other—the sequence has a first element, but no final element. Such a sequence is called a singly infinite sequence or a one-sided infinite sequence when disambiguation is necessary.
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...
The term Fibonacci sequence is also applied more generally to any function from the integers to a field for which (+) = + (+).These functions are precisely those of the form () = () + (), so the Fibonacci sequences form a vector space with the functions () and () as a basis.
The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. [1] This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ...