enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    For finding all the roots, arguably the most reliable method is the Francis QR algorithm computing the eigenvalues of the companion matrix corresponding to the polynomial, implemented as the standard method [1] in MATLAB. The oldest method of finding all roots is to start by finding a single root. When a root r has been found, it can be removed ...

  3. Aberth method - Wikipedia

    en.wikipedia.org/wiki/Aberth_method

    The Aberth method, or Aberth–Ehrlich method or Ehrlich–Aberth method, named after Oliver Aberth [1] and Louis W. Ehrlich, [2] is a root-finding algorithm developed in 1967 for simultaneous approximation of all the roots of a univariate polynomial. This method converges cubically, an improvement over the Durand–Kerner method, another ...

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Root-finding algorithm. In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide ...

  5. Padé approximant - Wikipedia

    en.wikipedia.org/wiki/Padé_approximant

    Padé approximant. In mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating. The technique was developed around 1890 by Henri Padé, but goes back ...

  6. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  7. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Primitive polynomial (field theory) In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF (pm). This means that a polynomial F(X) of degree m with coefficients in GF (p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF (pm) such that ...

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [1] Given a set of n + 1 data points , with no two the same, a polynomial function is said to interpolate the data if for each .

  9. Jenkins–Traub algorithm - Wikipedia

    en.wikipedia.org/wiki/Jenkins–Traub_algorithm

    The Jenkins–Traub algorithm calculates all of the roots of a polynomial with complex coefficients. The algorithm starts by checking the polynomial for the occurrence of very large or very small roots. If necessary, the coefficients are rescaled by a rescaling of the variable. In the algorithm, proper roots are found one by one and generally ...