Search results
Results from the WOW.Com Content Network
Where the null hypothesis represents a special case of the alternative hypothesis, the probability distribution of the test statistic is approximately a chi-squared distribution with degrees of freedom equal to , [2] respectively the number of free parameters of models alternative and null.
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
Statistical hypothesis testing is considered a mature area within statistics, [25] but a limited amount of development continues. An academic study states that the cookbook method of teaching introductory statistics leaves no time for history, philosophy or controversy. Hypothesis testing has been taught as received unified method.
The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.
The term "t-statistic" is abbreviated from "hypothesis test statistic". [1] In statistics, the t-distribution was first derived as a posterior distribution in 1876 by Helmert [2] [3] [4] and Lüroth. [5] [6] [7] The t-distribution also appeared in a more general form as Pearson type IV distribution in Karl Pearson's 1895 paper. [8]
Summary statistics: Apply common Bayesian tests from frequentist summary statistics for t-test, regression, and binomial tests. Time Series : Time series analysis. Visual Modeling : Graphically explore the dependencies between variables.
The program provides methods that are appropriate for matched and independent t-tests, [2] survival analysis, [5] matched [6] and unmatched [7] [8] studies of dichotomous events, the Mantel-Haenszel test, [9] and linear regression. [3] The program can generate graphs of the relationships between power, sample size and the detectable alternative ...
The q-value can be interpreted as the false discovery rate (FDR): the proportion of false positives among all positive results. Given a set of test statistics and their associated q-values, rejecting the null hypothesis for all tests whose q-value is less than or equal to some threshold ensures that the expected value of the false discovery rate is .