enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's circuit laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_circuit_laws

    The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:

  3. Nodal analysis - Wikipedia

    en.wikipedia.org/wiki/Nodal_analysis

    Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.

  4. Mathematical methods in electronics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_methods_in...

    Linear Algebra: Used to solve systems of linear equations that arise in circuit analysis. Applications include network theory and the analysis of electrical circuits using matrices and vector spaces; Calculus: Essential for understanding changes in electronic signals. Used in the analysis of dynamic systems and control systems.

  5. Network analysis (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Network_analysis...

    Simulation-based methods for time-based network analysis solve a circuit that is posed as an initial value problem (IVP). That is, the values of the components with memories (for example, the voltages on capacitors and currents through inductors) are given at an initial point of time t 0 , and the analysis is done for the time t 0 ≤ t ≤ t f ...

  6. Modified nodal analysis - Wikipedia

    en.wikipedia.org/wiki/Modified_nodal_analysis

    The MNA uses the element's branch constitutive equations or BCE, i.e., their voltage - current characteristic and the Kirchhoff's circuit laws. The method is often done in four steps, [3] but it can be reduced to three: Step 1. Write the KCL equations of the circuit. At each node of an electric circuit, write

  7. Harmonic balance - Wikipedia

    en.wikipedia.org/wiki/Harmonic_balance

    In the special context of electronics, the algorithm starts with Kirchhoff's current law written in the frequency-domain. To increase the efficiency of the procedure, the circuit may be partitioned into its linear and nonlinear parts, since the linear part is readily described and calculated using nodal analysis directly in the frequency domain.

  8. Mesh analysis - Wikipedia

    en.wikipedia.org/wiki/Mesh_analysis

    A more general technique, called loop analysis (with the corresponding network variables called loop currents) can be applied to any circuit, planar or not [citation needed]. Mesh analysis and loop analysis both make systematic use of Kirchhoff’s voltage law to arrive at a set of equations guaranteed to be solvable if the circuit has a ...

  9. Duality (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Duality_(electrical_circuits)

    parallel – series (circuits) resistance – conductance; voltage division – current division; impedance – admittance; capacitance – inductance; reactance – susceptance; short circuit – open circuit; Kirchhoff's current lawKirchhoff's voltage law. KVL and KCL; Thévenin's theorem – Norton's theorem