enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spacecraft attitude determination and control - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_attitude...

    A spacecraft's attitude must typically be stabilized and controlled for a variety of reasons. It is often needed so that the spacecraft high-gain antenna may be accurately pointed to Earth for communications, so that onboard experiments may accomplish precise pointing for accurate collection and subsequent interpretation of data, so that the heating and cooling effects of sunlight and shadow ...

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  4. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...

  5. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude , often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing ...

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  7. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The X axis is now at angle γ with respect to the x axis. The XYZ system rotates again, but this time about the x axis by β. The Z axis is now at angle β with respect to the z axis. The XYZ system rotates a third time, about the z axis again, by angle α. In sum, the three elemental rotations occur about z, x and z.

  8. Polar alignment - Wikipedia

    en.wikipedia.org/wiki/Polar_alignment

    In the Northern Hemisphere, rough alignment can be done by visually aligning the axis of the telescope mount with Polaris.In the Southern hemisphere or places where Polaris is not visible, a rough alignment can be performed by ensuring the mount is level, adjusting the latitude adjustment pointer to match the observer's latitude, and aligning the axis of the mount with true south or north by ...

  9. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The rotation axis is sometimes called the Euler axis. The axis–angle representation is predicated on Euler's rotation theorem, which dictates that any rotation or sequence of rotations of a rigid body in a three-dimensional space is equivalent to a pure rotation about a single fixed axis. It is one of many rotation formalisms in three dimensions.