Search results
Results from the WOW.Com Content Network
In his Essai sur la théorie des nombres (1798), Adrien-Marie Legendre derives a necessary and sufficient condition for a rational number to be a convergent of the simple continued fraction of a given real number. [4] A consequence of this criterion, often called Legendre's theorem within the study of continued fractions, is as follows: [5 ...
In mathematics, the Dirichlet function [1] [2] is the indicator function of the set of rational numbers, i.e. () = if x is a rational number and () = if x is not a rational number (i.e. is an irrational number).
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in R n , {\displaystyle \mathbb {R} ^{n},} and the study of these lattices provides fundamental information on algebraic numbers. [ 1 ]
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... This category represents all rational numbers, ...
if p ≡ 3 (mod 8), then p is not a congruent number, but 2 p is a congruent number. if p ≡ 5 (mod 8), then p is a congruent number. if p ≡ 7 (mod 8), then p and 2 p are congruent numbers. It is also known that in each of the congruence classes 5, 6, 7 (mod 8), for any given k there are infinitely many square-free congruent numbers with k ...
In Wonders of Numbers Pickover described the history of schizophrenic numbers thus: The construction and discovery of schizophrenic numbers was prompted by a claim (posted in the Usenet newsgroup sci.math) that the digits of an irrational number chosen at random would not be expected to display obvious patterns in the first 100 digits. It was ...