enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    While the partial sums of the reciprocals of the primes eventually exceed any integer value, they never equal an integer. One proof [6] is by induction: The first partial sum is ⁠ 1 / 2 ⁠, which has the form ⁠ odd / even ⁠. If the n th partial sum (for n ≥ 1) has the form ⁠ odd / even ⁠, then the (n + 1) st sum is

  3. Erdős conjecture on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Erdős_conjecture_on...

    Because the sum of the reciprocals of the primes diverges, the Green–Tao theorem on arithmetic progressions is a special case of the conjecture. The weaker claim that A must contain infinitely many arithmetic progressions of length 3 is a consequence of an improved bound in Roth's theorem .

  4. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The sum of the reciprocals of the primes of the form 4n + 1 is divergent. By Fermat's theorem on sums of two squares, it follows that the sum of reciprocals of numbers of the form + , where a and b are non-negative integers, not both equal to 0, diverges, with or without repetition.

  5. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The reciprocals of prime numbers produce a divergent series (so the set of primes is "large"; see divergence of the sum of the reciprocals of the primes): 1 2 + 1 3 + 1 5 + 1 7 + 1 11 + 1 13 + ⋯ → ∞ . {\displaystyle {1 \over 2}+{1 \over 3}+{1 \over 5}+{1 \over 7}+{1 \over 11}+{1 \over 13}+\cdots \rightarrow \infty .}

  6. Large set (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Large_set_(combinatorics)

    A small set is any subset of the positive integers that is not large; that is, one whose sum of reciprocals converges. Large sets appear in the Müntz–Szász theorem and in the Erdős conjecture on arithmetic progressions .

  7. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    Because it is a divergent series, it should be interpreted as a formal sum, an abstract mathematical expression combining the unit fractions, rather than as something that can be evaluated to a numeric value. There are many different proofs of the divergence of the harmonic series, surveyed in a 2006 paper by S. J. Kifowit and T. A. Stamps. [13]

  8. Brun's theorem - Wikipedia

    en.wikipedia.org/wiki/Brun's_theorem

    A prime quadruplet is a pair of two twin prime pairs, separated by a distance of 4 (the smallest possible distance). The first prime quadruplets are (5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109). Brun's constant for prime quadruplets, denoted by B 4, is the sum of the reciprocals of all prime quadruplets:

  9. Meissel–Mertens constant - Wikipedia

    en.wikipedia.org/wiki/Meissel–Mertens_constant

    The plot of the prime harmonic sum up to =,, …, and the Merten's approximation to it. The original of this figure has y axis of the length 8 cm and spans the interval (2.5, 3.8), so if the n axis would be plotted in the linear scale instead of logarithmic, then it should be 5.33 ( 3 ) × 10 9 {\displaystyle 5.33(3)\times 10^{9}} km long ...