Search results
Results from the WOW.Com Content Network
The sum of the reciprocals of all prime numbers diverges; that is: = + + + + + + + = This was proved by Leonhard Euler in 1737, [ 1 ] and strengthens Euclid 's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme 's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series) .
The harmonic mean of a set of positive integers is the number of numbers times the reciprocal of the sum of their reciprocals. The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn.
The convergence to Brun's constant. In number theory, Brun's theorem states that the sum of the reciprocals of the twin primes (pairs of prime numbers which differ by 2) converges to a finite value known as Brun's constant, usually denoted by B 2 (sequence A065421 in the OEIS).
The reciprocals of prime numbers produce a divergent series (so the set of primes is "large"; see divergence of the sum of the reciprocals of the primes): 1 2 + 1 3 + 1 5 + 1 7 + 1 11 + 1 13 + ⋯ → ∞ . {\displaystyle {1 \over 2}+{1 \over 3}+{1 \over 5}+{1 \over 7}+{1 \over 11}+{1 \over 13}+\cdots \rightarrow \infty .}
Because it is a divergent series, it should be interpreted as a formal sum, an abstract mathematical expression combining the unit fractions, rather than as something that can be evaluated to a numeric value. There are many different proofs of the divergence of the harmonic series, surveyed in a 2006 paper by S. J. Kifowit and T. A. Stamps. [13]
The plot of the prime harmonic sum up to =,, …, and the Merten's approximation to it. The original of this figure has y axis of the length 8 cm and spans the interval (2.5, 3.8), so if the n axis would be plotted in the linear scale instead of logarithmic, then it should be 5.33 ( 3 ) × 10 9 {\displaystyle 5.33(3)\times 10^{9}} km long ...
He also showed that the sum of the reciprocals of twin primes converges to a finite value, now called Brun's constant: by contrast, the sum of the reciprocals of all primes is divergent. He developed a multi-dimensional continued fraction algorithm in 1919–1920 and applied this to problems in musical theory.
Because the sum of the reciprocals of the primes diverges, the Green–Tao theorem on arithmetic progressions is a special case of the conjecture. The weaker claim that A must contain infinitely many arithmetic progressions of length 3 is a consequence of an improved bound in Roth's theorem .