Search results
Results from the WOW.Com Content Network
The scattered gas is then detected using a mass spectrometer. By then rastering the sample, an image of the sample can be formed. The scanning helium microscope (SHeM) is a form of microscopy that uses low-energy (5–100 meV) neutral helium atoms to image the surface of a sample without any damage to the sample caused by the imaging process ...
If the part is leaky, helium will be able to penetrate the device. Later the device will be placed in a vacuum chamber, connected to a vacuum pump and a mass spectrometer. The tiny amount of gas that entered the device under pressure will be released in the vacuum chamber and sent to the mass spectrometer where the leak rate will be measured.
As the helium ion beam interacts with the sample, it does not suffer from a large excitation volume, and hence provides sharp images with a large depth of field on a wide range of materials. Compared to a SEM, the secondary electron yield is quite high, allowing for imaging with currents as low as 1 femtoamp. The detectors provide information ...
The application of the pulse to the sample allows for individual atoms at the sample surface to be ejected as an ion from the sample surface at a known time. Typically the pulse amplitude and the high voltage on the specimen are computer controlled to encourage only one atom to ionize at a time, but multiple ionizations are possible.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Helium is inert - it does not react with other substances or combust - and its atomic number is 2, making it the second lightest element after hydrogen. Rockets need to achieve specific speeds and ...
Helium is the least water-soluble monatomic gas, [96] and one of the least water-soluble of any gas (CF 4, SF 6, and C 4 F 8 have lower mole fraction solubilities: 0.3802, 0.4394, and 0.2372 x 2 /10 −5, respectively, versus helium's 0.70797 x 2 /10 −5), [97] and helium's index of refraction is closer to unity than that of any other gas. [98]
An HID connected to a gas chromatograph (GC) has the great advantage to use helium as both the carrier gas and the ionization gas. An HID is an ion detector which uses a radioactive source, typically β-emitters, to create metastable helium species. [1] The radioactive source ionizes helium atoms by bombarding them with emissions.