enow.com Web Search

  1. Ads

    related to: basic properties of squares examples geometry questions pdf solutions

Search results

  1. Results from the WOW.Com Content Network
  2. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    In spherical geometry, a square is a polygon whose edges are great circle arcs of equal distance, which meet at equal angles. Unlike the square of plane geometry, the angles of such a square are larger than a right angle. Larger spherical squares have larger angles. In hyperbolic geometry, squares with right angles do not exist. Rather, squares ...

  3. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...

  4. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...

  5. Elementary mathematics - Wikipedia

    en.wikipedia.org/wiki/Elementary_mathematics

    An example is the function that relates each real number x to its square x 2. The output of a function f corresponding to an input x is denoted by f(x) (read "f of x"). In this example, if the input is −3, then the output is 9, and we may write f(−3) = 9. The input variable(s) are sometimes referred to as the argument(s) of the function.

  6. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    The sum of one odd square and one even square is congruent to 1 mod 4, but there exist composite numbers such as 21 that are 1 mod 4 and yet cannot be represented as sums of two squares. Fermat's theorem on sums of two squares states that the prime numbers that can be represented as sums of two squares are exactly 2 and the odd primes congruent ...

  7. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  8. Inscribed square problem - Wikipedia

    en.wikipedia.org/wiki/Inscribed_square_problem

    It is tempting to attempt to solve the inscribed square problem by proving that a special class of well-behaved curves always contains an inscribed square, and then to approximate an arbitrary curve by a sequence of well-behaved curves and infer that there still exists an inscribed square as a limit of squares inscribed in the curves of the sequence.

  9. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Examples of compass-only constructions include Napoleon's problem. It is impossible to take a square root with just a ruler, so some things that cannot be constructed with a ruler can be constructed with a compass; but (by the Poncelet–Steiner theorem) given a single circle and its center, they can be constructed.

  1. Ads

    related to: basic properties of squares examples geometry questions pdf solutions