Search results
Results from the WOW.Com Content Network
For a locally Lipschitz continuous function :, the Clarke generalized directional derivative of at in the direction is defined as (,) =, (+) (), where denotes the limit supremum.
deep A result is called "deep" if its proof requires concepts and methods that are advanced beyond the concepts needed to formulate the result. For example, the prime number theorem — originally proved using techniques of complex analysis — was once thought to be a deep result until elementary proofs were found. [1]
In mathematics, the Gateaux differential or Gateaux derivative is a generalization of the concept of directional derivative in differential calculus.Named after René Gateaux, it is defined for functions between locally convex topological vector spaces such as Banach spaces.
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Here one considers a modification of the directional derivative by a certain linear operator, whose components are called the Christoffel symbols, which involves no derivatives on the vector field itself. The directional derivative D u v of the components of a vector v in a coordinate system φ in the direction u are replaced by a covariant ...
A version of functional delta method holds for Hadamard directionally differentiable maps. Namely, let be a sequence of random elements in a Banach space (equipped with Borel sigma-field) such that weak convergence holds for some , some sequence of real numbers and some random element with values concentrated on a separable subset of .
The term differential is used in calculus to refer to an infinitesimal (infinitely small) change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an infinitely small or ...