enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line at infinity - Wikipedia

    en.wikipedia.org/wiki/Line_at_infinity

    The line at infinity is added to the real plane. This completes the plane, because now parallel lines intersect at a point which lies on the line at infinity. Also, if any pair of lines do not intersect at a point on the line, then the pair of lines are parallel. Every line intersects the line at infinity at some point. The point at which the ...

  3. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Line art drawing of parallel lines and curves. In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three ...

  4. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    In any affine space (including a Euclidean space) the set of lines parallel to a given line (sharing the same direction) is also called a pencil, and the vertex of each pencil of parallel lines is a distinct point at infinity; including these points results in a projective space in which every pair of lines has an intersection.

  5. Plane at infinity - Wikipedia

    en.wikipedia.org/wiki/Plane_at_infinity

    Any pair of parallel lines in 3-space will intersect each other at a point on the plane at infinity. Also, every line in 3-space intersects the plane at infinity at a unique point. This point is determined by the direction—and only by the direction—of the line. To determine this point, consider a line parallel to the given line, but passing ...

  6. Point at infinity - Wikipedia

    en.wikipedia.org/wiki/Point_at_infinity

    The real line with the point at infinity; it is called the real projective line. In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane.

  7. Real projective plane - Wikipedia

    en.wikipedia.org/wiki/Real_projective_plane

    If we walk far enough away what we are looking at becomes a point in the distance. As we walk away we see more and more of the parallel lines. The lines will meet at a line at infinity (a line that goes through zero on the plane at z = 0). Lines on the plane when z = 0 are ideal points. The plane at z = 0 is the line at infinity.

  8. Projective plane - Wikipedia

    en.wikipedia.org/wiki/Projective_plane

    in K 3 —called the line at infinity. The points at infinity are the "extra" points where parallel lines intersect in the construction of the extended real plane; the point (0, x 1, x 2) is where all lines of slope x 2 / x 1 intersect. Consider for example the two lines = {(,):}

  9. Real projective line - Wikipedia

    en.wikipedia.org/wiki/Real_projective_line

    In geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity".