Search results
Results from the WOW.Com Content Network
The path graph with four vertices provides the simplest example of a graph whose chromatic number differs from its Grundy number. This graph can be colored with two colors, but its Grundy number is three: if the two endpoints of the path are colored first, the greedy coloring algorithm will use three colors for the whole graph.
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. [1] In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.
Download as PDF; Printable version; In other projects ... Pages in category "Greedy algorithms" The following 9 pages are in this category, out of 9 total.
The right example generalises to 2-colorable graphs with n vertices, where the greedy algorithm expends n/2 colors. In the study of graph coloring problems in mathematics and computer science , a greedy coloring or sequential coloring [ 1 ] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the ...
The greedy coloring algorithm, when applied to a given ordering of the vertices of a graph G, considers the vertices of the graph in sequence and assigns each vertex its first available color, the minimum excluded value for the set of colors used by its neighbors. Different vertex orderings may lead this algorithm to use different numbers of ...
A basic problem regarding weighted matroids is to find an independent set with a maximum total weight. This problem can be solved using the following simple greedy algorithm: Initialize the set A to an empty set. Note that, by definition of a matroid, A is an independent set. For each element x in E\A, check whether Au{x} is still an ...
This result guarantees the optimality of many well-known algorithms. For example, a minimum spanning tree of a weighted graph may be obtained using Kruskal's algorithm, which is a greedy algorithm for the cycle matroid. Prim's algorithm can be explained by taking the line search greedoid instead.
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of jobs, each of which has a specific processing-time. There is also a number m specifying the number of machines that can process the jobs. The LPT algorithm works as follows: